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1. INTRODUCTION

In Euler}Bernoulli beam theory it is assumed that the beam cross-section remains
rigid and perpendicular to the neutral axis of the beam [1, 2]. In this theory, the e!ect of the
shear deformation is neglected. In Timoshenko beam theory on the other hand, the
cross-section does not remain perpendicular to the beam neutral axis. Nonetheless, the
cross-section remains rigid in many models. A shear coe$cient is introduced in order to
account for the shear deformation [3]. In this investigation, a two-dimensional
shear-deformable beam element based on the non-incremental absolute nodal co-ordinate
formulation [4] is developed. In this approach, only absolute co-ordinates and global
slopes are used to de"ne the element nodal co-ordinates without the need for using
in"nitesimal or "nite rotations. Using this co-ordinate representation with the appropriate
element shape function, exact modelling of the rigid body dynamics can be achieved. Using
the non-incremental absolute nodal co-ordinate formulation, the resulting mass matrix of
the "nite element is a constant matrix and the centrifugal and Coriolis forces are identically
equal to zero.

A problem encountered in the implementation of the non-incremental absolute nodal
co-ordinate formulation is the formulation of the elastic forces. Shabana et al. [4}8]
proposed two methods for formulating the elastic forces of the two-dimensional beam
element. In the "rst method, a local element co-ordinate system is introduced for the
convenience of describing the element deformation. This approach leads to a complex
expression for the elastic forces even when a linear elastic model is used. In the
second method [9] a continuum mechanics approach is used to obtain the elastic forces
without introducing the local element co-ordinate system. In this continuum mechanics
approach, non-linear strain}displacement relationships must be used in order to obtain
zero strain under an arbitrary rigid body motion. Nonetheless, the previous models
developed using the continuum mechanics approach are based on Euler}Bernoulli beam
theory which does not account for the shear deformation. It is the objective of this
investigation to develop a model for the elastic forces for two-dimensional beam elements
that accounts for shear deformation by using a general continuum mechanics approach
without introducing a local element co-ordinate system. This new model relaxes the
assumptions of Euler}Bernoulli and Timoshenko beam models and does not require the use
of a shear coe$cient.
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2. KINEMATICS OF THE SHEAR-DEFORMABLE BEAM

For the two-dimensional shear-deformable beam element, the displacement "eld is
de"ned in the global co-ordinate system as
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where r, as shown in Figure 1, is the global position vector of an arbitrary point P in the
beam cross-section, a

i
and b

i
are the polynomial coe$cients, and x and y are the spatial

co-ordinates de"ned in a beam co-ordinate system. The spatial co-ordinate x is chosen to be
along the beam axis (0)x)l ), where l is the element length. Note that the assumed
displacement "eld depends on y in order to account for the shear deformation.

In Euler}Bernoulli beam theory, the e!ect of the shear deformation is neglected [1]. The
basic assumption in Euler}Bernoulli beam theory is that the cross-section of the beam
remains normal to the beam neutral axis as shown in Figure 2(a). The beam cross-section at
any point along the beam neutral axis can be de"ned by the Frenet frame. The Frenet frame
has one of its axes tangent to the beam neutral axis and the other axis perpendicular to the
Figure 1. The position vector of an arbitrary point on the beam cross-section: (a) the beam in the
undeformed con"guration; (b) the beam in the deformed con"guration.



Figure 2. The beam deformation assumptions: (a) the Euler}Bernoulli beam without shear deformation;
(b) the beam element with shear deformation.
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beam neutral axis [10]. The tangent vector t can be de"ned by Lr/Lx. In a shear-deformable
beam model, the cross-section of the beam does not remain normal to the neutral axis, as
shown in Figure 2(b). As a result, the tangent to the neutral axis cannot be used to de"ne the
cross-section. In order to demonstrate that the shape function of equation (1) accounts for
the shear e!ect, consider an arbitrary vector Dr, which is de"ned in the beam cross-section
as shown in Figure 1. Using the displacement "eld de"ned by equation (1), it can be shown
that
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where r is the global position vector of an arbitrary point P in the cross-section with
co-ordinates (x, y), and r

y/0
is the position vector of the corresponding point P

o
on the beam

centerline with co-ordinates (x, 0). The preceding equation shows that any arbitrary vector
drawn on the beam cross-section can be de"ned by the vector Lr/Ly, and as a consequence
the vector Lr/Ly de"nes the cross-section of the beam. In the absolute nodal co-ordinate
formulation, the global position vector of an arbitrary point on the beam can be written as
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where S is the global element shape function, and e is the vector of nodal co-ordinates. The
vector of the element nodal co-ordinates e is given by
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The vector of nodal co-ordinates includes the global displacements
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The element shape function S must have a complete set of rigid body modes that describe
arbitrary rigid body translation and rotational displacements. Using the element nodal
co-ordinates given by equation (4), the element shape function can be de"ned as
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where the functions s
i
"s(m, g) are de"ned as
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and m"x/l, g"y/l ; l is the element length.

3. CONSTANT MASS MATRIX

The global position vector of an arbitrary point on the shear-deformable beam is given by
equation (3). By di!erentiating this equation with respect to time, the absolute velocity
vector can be de"ned as r5"Se5 . This vector can be used to de"ne the kinetic energy of the
element as
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where< is the volume, o the mass density of the beam material, and M
a
the mass matrix of

the element. The mass matrix in equation (6) is constant and symmetric. Using the shape
function given by equation (5), the mass matrix is given by
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where m is the total mass of the "nite element, l the element length, J
1
the "rst moment of mass

de"ned as J
1
":

V
oyd<, and J

2
the second moment of mass de"ned as J
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4. ELASTIC FORCES

In this section, the non-linear strain}displacement relations are used to develop an
expression for the elastic forces of the beam element. The deformation gradient can be
de"ned as [11]
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where S
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is the ith row of the element shape function, J
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is the vector of absolute nodal coordinates in the initial con"guration.

The matrix J
0

must be considered in formulating the elastic forces if the beam has an
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arbitrary initial con"guration. Note that J
0

is the identity matrix for initially horizontal
beams. In the following discussion, we consider the simple case of a beam that is horizontal
in the initial con"guration. The Lagrangian strain tensor e

m
in the case of initially

horizontal beam can be written as
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where I is the identity matrix, S
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. It should be noted that the strain tensor is symmetric; thus its
components can be written in a vector form as
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A general expression for the strain energy can be written using the strain vector e and the
stress vector p"[p

1
p
2

p
3
]T as follows [12, 13]:
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Using the constitutive equations, the stress vector is related to the strain vector by
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where E is the matrix of the elastic constants of the material. For isotropic homogenous
material, matrix E can be expressed in terms of Lame's constants j and k as
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where j"El/[(1#l) (1!2l)], k"E/[2(1#l)], E is Young's modulus of elasticity, and
l is the Poisson's ratio of the beam material. Using equation (12) and (13), the strain energy
can be rewritten as
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The vector of the elastic forces Q
e
can be de"ned using the strain energy ; as
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where K is the sti!ness matrix which can be written as
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Note that the general expression for the elastic forces obtained in this investigation using
the continuum mechanics approach and the non-linear strain}displacement relationships is
much simpler than the expression obtained in previous investigations [5, 7] using the
element local co-ordinate system and linear strain}displacement relationships. The general
expression obtained in this paper automatically captures the e!ect of geometric centrifugal
sti!ening.

5. FORMULATION OF THE GENERALIZED EXTERNAL FORCES

The virtual work can be used to develop the vector of the generalized external forces [4].
The virtual work due to an externally applied force F acting on an arbitrary point on the
element is given by
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where r is the position vector of the point of application of the force, and Q
e
"STF is the

vector of the generalized forces associated with the element nodal co-ordinates. For
example, the virtual work due to the distributed gravity of the "nite element can be obtained
using the shape function and equation (17) as
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This de"nes the vector of generalized distributed gravity forces as
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When an external moment M acts on the cross-section of the beam, the virtual work due
to this moment is given by

d=
M
"Mdc, (20)

where c is the angle of rotation of the cross-section. The orientation of a co-ordinate system
attached to the cross-section can be de"ned using the transformation matrix
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Using these two equations, it can be shown that the virtual change in the cross-section
orientation angle can be de"ned as
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If a concentrated moment is applied for example at node A, the generalized force vector due
to this moment is de"ned as
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6. NUMERICAL EXAMPLES

Using the obtained expressions of the elastic and inertia forces, the equations of motion
can be obtained using the absolute nodal co-ordinates as

M
a
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where Q is the vector of generalized nodal forces including the elastic force vector Q
e
and

external force vector Q
k
, and eK is the vector of absolute accelerations. As previously

mentioned, the centrifugal and Coriolis force vectors are equal to zero since the mass matrix
is constant.

In this section, an example is considered in order to demonstrate the performance of the
proposed beam model. The example considered is the free falling of a #exible pendulum
under its own weight. The free falling two-dimensional beam is shown in Figure 3. The
beam is connected to the ground by a pin joint at one end. The beam has length of 1)2 m,
circular cross-sectional area of 0)0016m2, second moment area of 8)533E-06, a mass density
of 5540 kg/m3, Poisson's ratio of 0)3, and a modulus of elasticity of 0)700E 06. The beam is
initially horizontal with zero initial velocity and free to fall under the e!ect of gravity. The
gravity constant is assumed to be 9)81 m/s2. The simulations of the beam are performed
using di!erent numbers of elements. Figure 4 shows the position of the tip point of the beam
using 6 and 12 "nite elements when the gravity constant is equal to 9)81 m/s2. It is clear
from the results presented in this "gure that there is a good agreement between the two
models. The results demonstrate that the solution converges with small numbers of
elements.

Since the falling pendulum is a conservative system, the sum of the energy components
must remain constant, that is

ne
+
i
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where ¹ i is the element kinetic energy, ;i is the element strain energy, <i is the element
potential energy, and ne is the number of elements of the system. Figure 5 shows the energy
balance for a six-element model. The results presented in this "gure show that the total
energy remains constant. The results obtained using the six-element model are the same as
Figure 3. Free falling #exible pendulum.



Figure 4. Displacement of the beam tip point under acceleration 9)81 m/s2 using: ---j---, 6 elements;*d*,
12 elements.

Figure 5. Energy balance of the beam (g"9)81 m/s2):*d*, kinetic energy;*m*, potential energy; ---r---,
elastic energy; , total energy.
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the results of the 12-element model. Figure 6 shows the large deformation con"gurations of
the falling beam at di!erent time steps under gravitational acceleration of 50 m/s2 using 12
"nite elements.

The shear-deformable model developed in this investigation relaxes the assumption of
Euler}Bernoulli beam theory. In this model, the cross-section does not remain
perpendicular to the beam centerline due to the e!ect of the shear deformation. Figure 7



Figure 6. The falling #exible pendulum at di!erent time steps using 12 elements (g"50 m/s2).

Figure 7. Comparison between the Euler}Bernoulli beam and shear-deformable beam: *.*, Euler}
Bernoulli beam model; *j*, shear-deformable beam.
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shows a comparison between the results obtained using this new model and the
Euler}Bernoulli beam model previously presented by Berzeri and Shabana [9] who used
a shape function that does not depend on y. The results in this "gure are obtained using 12
elements. It is important to point out that the shear-deformable model, because of the
dependence of the shape function on y, leads to a simpler expression for the elastic forces.



Figure 8. The norm of the vector Lr/Ly as function of time at: *j*, Node 5; *d*, Node 9.
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More surprisingly, signi"cant saving in computer time was achieved using the shear-
deformable model. It was observed that the shear-deformable model is two times faster than
the Euler}Bernoulli model. The results presented in Figure 7 show that there is a very good
agreement between the shear-deformable beam model and the model based on the
Euler}Bernoulli beam theory since a thin beam is used.

The shear-deformable model developed in this investigation also relaxes the assumption
of some Timoshenko beam models since it allows for the plane deformation of the
cross-section, that is the cross-section remains plane but not rigid. The deformation of the
cross-section can be measured by the deviation of the norm of the vector Lr/Ly from one.
Figure 8 shows the norm of this vector at node 5 and node 9 as a function of time in the case
of free falling pendulum and gravity constant of 50 m/s2.

7. SUMMARY AND CONCLUSIONS

In this investigation, a shear-deformable beam model based on the non-incremental
absolute nodal co-ordinate formulation is developed for the large rotation and large
deformation analysis. The beam model leads to exact modelling of the rigid body dynamics
and leads to zero strain under an arbitrary rigid body displacement. Furthermore, the
model relaxes some of the assumptions of Euler}Bernoulli and Timoshenko beam models.
The cross-section in the new model does not remain rigid and does not remain
perpendicular to the beam centerline. By using a continuum mechanics approach, the model
leads to a relatively simple expression for the elastic forces.

While the model accounts for the e!ect of the rotary inertia and shear deformation, the
mass matrix remains constant. As a consequence, the centrifugal and Coriolis forces are
identically equal to zero. A numerical example, a free falling pendulum, was used to
demonstrate the use of the new beam model. Numerical results obtained in this study
demonstrated that the solutions obtained using the new model converges much faster as
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compared to the non-shear-deformable models presented in previous investigations.
Furthermore, signi"cant saving in computer time is achieved by using the more general
shear-deformable model that is based on the non-linear strain-displacement relationships.
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